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Cordial saludo: 
 
Por medio de la presente comunicación, me permito enviar la recomendación del 
jurado evaluador para que se otorgue la distinción Trabajo de Grado Meritorio al 
Trabajo de Investigación titulado <Prostate lesions characterization in MRI sequences 
using a deep contrastive learning framework=; realizado por el estudiante de Maestría 
en Ingeniería de Sistemas e Informática Yesid Alfonso Gutiérrez Guate, con código de 
estudiante 2208454 Este Trabajo de investigación cumple con los requisitos 
establecidos en el Artículo 110 del Acuerdo del Consejo Superior No. 075 de 2013 
(Reglamento General de Posgrado). Con respecto al parágrafo de este artículo, el 
estudiante y autor del Trabajo de Investigación inició sus estudios de Maestría en el 
segundo periodo académico del 2020, culminó las asignaturas del programa y su 
Trabajo de Investigación en el primer semestre académico del 2023 siendo este su 
sexto (6) periodo académico. El estudiante entregó el 30 de marzo de 2023 el informe 
correspondiente a su Trabajo de Investigación para su respectiva evaluación. El cual 
recibió la calificación de APROBADO el 13 de julio de 2023 por parte del jurado 
calificador. 
 
 
Los resultados reportados en el presente Trabajo de Investigación: 

● Gutiérrez, Y., Arevalo, J., & Martánez, F. (2022, July). <Multimodal Contrastive 
Supervised Learning to Classify Clinical Significance MRI Regions on Prostate 
Cancer=. In 2022 44th Annual International Conference of the IEEE Engineering in 
Medicine & Biology Society (EMBC) (pp. 1682-1685). IEEE. 

Artículo publicado en Revista categoría B según publindex (ISSN 2694-0604). 
Paper 
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● Gutiérrez, Y., Arevalo, J., & Martínez, F. (2022). An inception-based deep 
multiparametric net to classify clinical significance MRI regions of prostate cancer. 
Physics in Medicine & Biology, 67(22), 225004. 
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A esta comunicación se adjunta el concepto del jurado calificador. 
 
 
 
Atentamente, 
 
 
 
 
FABIO MARTÍNEZ CARRILLO 
Coordinador de los Programas de Posgrados 
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desarrolle el trabajo de grado. Artículo 110  literal a). Reglamento General de Posgrados Acuerdo 
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El maestrando realizó un trabajo de investigación original, que tiene en cuenta el estado del arte y 
genera un aporte significativo al mismo. Tanto la disertación como la presentación se presentaron 
de una manera clara y bien estructurada. Se consiguieron los objetivos planteados, y los resultados 
constituyen un avance claro al estado del arte. 
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b). Publicación o aceptación de (1) artículo de su 
autoría, en revistas indexadas u homologadas por 
COLCIENCIAS en categoría A o B según la 
clasificación vigente de PUBLINDEX, de 
COLCIENCIAS, o en revistas con índice de impacto 
equivalentes a estas categorías, que contengan 
expresamente los avances o resultados del trabajo de 
grado. Artículo 110  literal c). Reglamento General de 
Posgrados Acuerdo 075 de 2013 del Consejo 
Superior. 

SI  X     NO  

b). Publicación o aceptación de (2) 
artículo de su autoría, en revistas 
indexadas u homologadas por 
COLCIENCIAS en categoría A según la 
clasificación vigente de PUBLINDEX, 
de COLCIENCIAS, o en revistas con 
índice de impacto equivalentes a estas 
categorías, que contengan 
expresamente los avances o resultados 
del trabajo de grado. Artículo 110 literal 
b). Reglamento General de Posgrados 
Acuerdo 075 de 2013 del Consejo 
Superior. 

SI         NO  

c). Participación con ponencia en, al menos, un (1) 
evento académico internacional. Esta ponencia debe 
incluir expresamente los avances o resultados del 
trabajo de grado. Artículo 110  literal c). Reglamento 
General de Posgrados Acuerdo 075 de 2013 del 
Consejo Superior. 

SI  X     NO  

c). Participación con ponencia en, al 
menos, un (1) evento académico 
internacional. Esta ponencia debe incluir 
expresamente los avances o resultados del 
trabajo de grado. Artículo 110 literal c). 
Reglamento General de Posgrados 
Acuerdo 075 de 2013 del Consejo 
Superior. 

SI         NO  

d). Para acceder a las distinciones de Trabajo de grado 
laureado y Trabajo meritorio, el estudiante-autor del 
trabajo de grado debe haber finalizado el programa, en 
su totalidad, en el tiempo establecido por la universidad 
para ello. Artículo 139 parágrafo 1. Reglamento General 
de Posgrados Acuerdo 075 de 2013 del Consejo 
Superior. 

SI  X      NO  

d). Para acceder a las distinciones de 
Trabajo de grado laureado y Trabajo 
meritorio, el estudiante-autor del trabajo 
de grado debe haber finalizado el 
programa, en su totalidad, en el tiempo 
establecido por la universidad para ello. 
Artículo 139 parágrafo 1. Reglamento 
General de Posgrados Acuerdo 075 de 
2013 del Consejo Superior. 

SI         NO  

Consideraciones, Comentarios y Observaciones:  
El trabajo de investigación propuesto supera los alcances académicos en un trabajo de maestría, fundamentados en los productos 
académicos alcanzados. Además, los objetivos fueron plenamente cumplidos, así como el modelo de segmentación propuesto tiene 
resultados competitivos en el estado del arte 
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Los alcancen de esta tesis sobrepasan lo esperado para una tesis de Maestria. El 
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Multimodal Contrastive Supervised Learning to Classify Clinical

Significance MRI Regions on Prostate Cancer

Yesid Gutiérrez1 John Arevalo2, and Fabio Martı́nez3

Abstract— Clinically significant regions (CSR), captured
over multi-parametric MRI (mp-MRI) images, have emerged
as a potential screening test for early prostate cancer detection
and characterization. These sequences are able to quantify
morphology, micro-circulation, and cellular density patterns
that might be related to cancer disease. Nonetheless, this
evaluation is mainly carried out by expert radiologists,
introducing inter-reader variability in the diagnosis. Therefore,
different deep learning models were proposed to support
the diagnosis, but a proper representation of prostate lesions
remains limited due to the non-alignment among sequences
and the dependency of considerable amounts of labeled data
for learning. The main limitation of such representation
lies in the cross-entropy minimization that only exploits
inter-class variation, being insufficient data augmentation and
transfer learning strategies. This work introduces a Supervised
Contrastive Learning (SCL) strategy that fully exploits the
inter and intra-class variability of prostate lesions to robustly
represent MRI regions. This strategy extracts lesion sample
tuples, with positive and negative labels, regarding a query
lesion. Such tuples are involved into an easy-positive, and semi-
hard negative mining to project samples that better update the
deep representation. The proposed learning strategy achieved
an average ROC-AUC of 0.82, to characterize prostate cancer
in MRI, using only the 60% of the available annotated data.

Clinical relevance— A robust learning scheme that properly
finds representations in limited data scenarios to classify clini-
cally significant MRI regions on prostate cancer.

I. INTRODUCTION

The American Cancer Society reported 191.930 new cases

of prostate cancer in the United States during 2020, be-

coming the cancer with highest incidence in men [1]. The

early detection and diagnosis of this disease may signifi-

cantly reduce deaths. However, current over-diagnosis limits

a proper characterization of malignant tumors and treatment

of the disease [1]. Nowadays, the Prostatic Specific Antigen

(PSA) is the most common screening test at early stages but

with significant low specificity (approx. 25%), requiring ad-

ditional tests to guarantee an effective and correct diagnosis

[2]. Also, the digital rectal examination is highly dependent

of physician’s experience and only effective to detect malig-

nant tumors at peripheral prostate zone. Currently, a promis-

ing alternative to support the early diagnosis and screening

of prostate cancer lies on the analysis of multi-parametric

1 Yesid Gutiérrez is a member of Biomedical Imaging Vision and Learn-
ing Laboratory (BIVL

2ab), Universidad Industrial de Santander, Colombia.
yesid.gutierrez@saber.uis.edu.co,

2John Arevalo is a member of Machine Learning Analysis and com-
puter vision (MLACV), Universidad Industrial de Santander, Colombia.
jearevaloo@unal.edu.co

3Fabio Martı́nez is with the Department of Systems Engineering, Univer-
sidad Industrial de Santander, Colombia. famarcar@uis.edu.co

Magnetic Resonance Imaging (mp-MRI) sequences. Among

others, these sequences estimate in-vivo the aggressiveness of

malignant tumors, even located far from the rectum wall [3],

[4]. Among the most notable sequences are the T2-weighted

imaging (T2WI), the Diffusion Weighted Imaging (DWI),

and the Dynamic Contrast Enhanced (DCE). Particularly,

T2WI is used to detect and grade cancer, as well as to char-

acterize the morphological features of the prostatic gland.

Complementary, DWI allows to quantify the cellular density

of the tissues, being the ADC, and the Maximum B value (B-

VAL) images, remarkable modalities from such sequences.

Also, Ktrans maps from DCE sequences support quantifica-

tion of the tumor aggressiveness, as well as the recognition

of micro-circulation properties, reflecting vascular patterns

as a response of gadolinium influx [5], [6]. Nevertheless,

the analysis of prostate cancer lesions is commonly based

on radiologist experience, introducing inter-reader variability

and over-diagnosis, resulting in a uncontrolled progression of

the disease.

Nowadays, deep learning strategies have been proposed

to quantitatively support lesion analysis, to enhance cancer

characterization and to achieve a relationship of radiolog-

ical findings with biopsy results. For instance, Mehrtash

et. al proposed a multimodal 3D CNN architecture that

integrated regions of ADC, B-VAL, and Ktrans images

with zonal information of the prostatic gland [7]. Also,

Chen et. al proposed a multimodal VGG-16 architecture

that integrated T2WI, ADC and Ktrans maps into an RGB

channel scheme using a transfer learning (TL) strategy from

ImageNet dataset [8]. Afterwards, Bleker et. al extracted

92 radiomic features from the available mp-MRI data [9].

These radiomic features were used as descriptor of the

lesions using a Random forest (RF) and an extreme gradient

boosting (XGB) algorithm. Also, Aldoj et. al , proposed a 3D

mp-MRI multi-channel CNN architecture that uses different

combinations of T2WI, DWI, ADC and Ktrans images

[10]. These multimodal deep strategies have evidenced a

potential support to represent, characterize and reduce false

positives of malignant prostate lesions. Nonetheless, these

representations remain dependent of a stratified, balanced,

and well-labeled mp-MRI data, which may be a critical

issue on clinical scenarios. Despite that some studies have

addressed this issue from data augmentation [7], [9], [10] and

transfer learning techniques [8], the representations remain

insufficient to generalize explicit learned information. This

fact may be associated to a cross-entropy rule that only

follows an inter-class minimization without considering high

self class variability.



The main contribution of this work is a supervised con-

trastive learning (SCL) strategy that fully exploits positive

and negative visual samples, allowing to discriminate CSR

over MRI-MP sequences. The proposed strategy extends

traditional learning algorithms, by including an energy based

learning scheme that models the inter and intra-variability of

prostate lesions represented as textural similarities among

CSR. We selected a state-of-the-art backbone that not only

characterizes malignant prostate lesions from mp-MRI se-

quences, but also discriminates such lesions according to

the available zonal information [7]. Then an easy-positive

mining strategy was herein implemented to find tuples of

training sample configurations that better update the deep

representation. Then, a contrastive loss was implemented

to built an embedding space where distance among query

and negative lesions were maximized. Finally, The pro-

posed learning strategy was validated in three sub-sampling

schemes to emulate different challenging clinical scenarios.

The achieved results show that the proposed SCL strategy

obtained a better performance even in smaller sub-data sets.

Hence, the proposed representation is able to learn inter and

intra-class variability, exploiting textural similarities among

the annotated data.

II. PROPOSED APPROACH

This study proposes a SCL strategy to fit a multimodal

deep representation to classify CSR in MRI under limited

availability of annotated data scenarios. The general pipeline

of the proposed scheme is illustrated in Figure 1.
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Fig. 1. Pipeline of the proposed approach: (a) each prostate lesion is
augmented and projected into an embedding vector. Then, these embedding
vectors are grouped or pulled off depending on their categories by using
a contrastive loss function. (b) A state-of-the-art visual representation that
integrates the available mp-MRI data [7].

A. Visual representation of prostate lesions in MRI

This work uses as deep backbone representation, a mul-

timodal convolutional architecture inspired in Mehrtash et

al. [7], in the same context of classification of CSR in MP-

MRI images. The original network uses as inputs the ADC,

B-VAL and Ktrans images. Nonetheless, current studies in

clinical practice suggest that DCE-MRI may not be relevant

to characterize malignant lesions, while the T2WI images

allow to localize and stage tumors [5], [11]. Following these

assumptions and the potential usability in clinical routine,

we decided to perform a bp-MRI approach that integrates

ADC, B-VAL, and T2WI maps to characterize CSR. Then as

seen in Figure 1-b, the multimodal network takes each MRI

modality and models 3D convolutional branches indepen-

dently. The resultant last-embedding vectors of each modality

are fused following a concatenation scheme. Additionally, the

zonal information is integrated in the fused representation to

include information about disease occurrence. It is notewor-

thy that the proposed SCL approach has the flexibility of any

deep representation that characterizes CSR in MRI.

B. Learning lesions from contrastive representations

For supervised contrastive learning, the backbone fθ (a

convolutional model with θ parameters) is updated during

each epoch by maximizing an embedding space that rep-

resents positive and negative prostate regions. Firstly, the

selected backbone is modified to project a set of embedding

vectors that represents the multimodal input of prostate

regions. Then a learning scheme is defined to build an

optimal embedding space that maximizes the distance among

different classes (inter class-variability), while clustering

lesions of same class (intra-class variability). Each MP-MRI

regions xk together with zonal information, are projected to

the convolutional representation fθ to obtain the respective

embedding vector fθ(xk) ∈ R
n. These Euclidean vectors

are then normalized to form a unit hyper-sphere allowing a

computational efficiency during training.

During the training phase, each batch of data is composed

by query-positive lesion pairs (xi, xj) and a set of negative

lesion samples {xk}. This sample is approached from the

same image data by following image augmentations on

each of the lesions. These new samples, obtained from

transformations, introduce variability on the data distribution

allowing to properly measure prostate lesion similarities

between query-positive lesions and textural variability among

query-negative lesions. Here, the embedding space is built

from a contrastive learning rule, implemented as the NT-

Xent contrastive loss objective function [12], defined as:

Li,j = −log
exp(fθ(xi)

¦ · fθ(xj)/τ)
∑2N

k=1 1[k ̸=i]exp(fθ(xi)¦ · fθ(xk)/τ)

Where τ is a temperature hyper-parameter that controls

the sensitivity of the similarity measurements. This objec-

tive loss function takes advantage of positive and negative

lesions to better exploit inter and intra class variability, being

robust to obtain good representations from limited number

of annotated MRI data. The end-to-end classification may

lose topological properties from the embedded representa-

tion, such as, the unit norm, the distance, and the angle

between vectors to describe malignant lesions. Therefore, the

resulting contrastive space is used as a descriptor of prostate

cancer. Finally, a Logistic Regression classifier was selected



to linearly discriminate the embedded vectors as malignant

(CSR) or benign according to the hyper-plane separation.

C. Contrastive lesion mining

Contrastive learning approaches require to properly select

tuples that are sufficiently challenging to variate the repre-

sentation to capture main textural moments that discriminate

among lesions. Particularly, in any dataset with a total of

N samples, the contrastive learning may take 2N anno-

tated lesions, considering the augmentation of samples from

simple transformations. In such case, the total amount of

possible tuples is 8N3, being many of these tuples noise

and sub-optimals to help regarding the task of updating the

convolutional representation.

This work considered the query-positive (xi, xj) and

query-negative (xi, xk) tuples to map relevant tuples and

guarantee a convergence of the learning strategy. The easy-

positive mining strategy finds the most similar positive sam-

ple xj in the mp-MRI image x with respect to the same label

C(xi) = C(x) as the anchor sample xi. This search is for-

mally defined as xj = argminx:C(x)=C(xi) d(f(xi), f(x)),
where d(, ) is the euclidean distance among two given

lesions. Complementary, the semi-hard negative mining

finds the most significant negative lesion xk, where

xk = argminx:C(x) ̸=C(xi) d(f(xi), f(x)), constrained by

d(f(xi), f(x)) > d(f(xi), f(xj)). This mining strategy

filters tuples for mapping during training, maintaining the

intra-class variance, and producing useful gradients during

the learning stage [13].

D. Experimental setup

Dataset. This public dataset was used in the PROSTATEx

grand challenge, and contains 204 MRI studies which corre-

spond to 320 labeled prostate lesions. Each case consists of

four sets of MRI scan data: two sets of T2-weighted images,

ADC images computed from DWI, and Ktrans images

(computed from dynamic contrast-enhanced (DCE) images)

[14]. Additionally, the dataset includes annotations related

with the lesion location [k, j, i], the clinical significance of

the lesion supported by biopsy, and the prostate zone of the

study. The finding information was provided by two expert

radiologists [14].

Method setup. We extracted volumetric MRI ROIs xi cen-

tered on the radiologist annotations with a fixed voxel region

size of 12 × 32 × 32 to locally represent the lesion. Each

sample was artificially augmented following transformations,

such as: vertical and horizontal translations, random rotations

and flipping w.r.t the horizontal plane. At the training phase,

we emulated three challenging scenarios with scarce of

labeled lesions (benignant, stratified, and malignant lesions

sub-sampling) to study the diagnosis performance of our

proposed approach. Additionally, each prostate lesion ROI

xi was projected into an embedding feature vector fθ(xi) ∈
R

128, where fθ is an encoding network. Moreover, such deep

convolutional representation was optimized with a RMSprop

algorithm using a momentum of 0.6 and a learning rate of

1× 10−6. For validation of the proposed approach, each of

the configurations was mapped to the test set defined by the

authors of the challenge, returning the corresponding Area

Under the Receiver Operating Characteristic Curve (ROC-

AUC) to measure the performance of the diagnosis [14].

III. EVALUATION AND RESULTS

The availability of large amounts of MP-MRI annotated

data is a principal limitation on clinical scenarios to imple-

ment deep learning strategies. Then, a main issue is to obtain

reliable representations to support classification of CSR with

relative few information. In this work, we emulate three

challenging scenarios with incremental data to analyze the

behavior of our SCL strategy. This learning scheme uses a

multimodal network as backbone, that receives as input a

bp-MRI approach that integrates prostate zonal information,

ADC, B-VAL, and T2WI maps. Additionally, we selected the

binary cross-entropy (BCE) as baseline to compare achieved

results by the proposed training strategy.

TABLE I

TEST ROC-AUC PERFORMANCE ACHIEVED BY DIFFERENT

CONTRASTIVE CONFIGURATIONS IN A STRATIFIED SUB-SAMPLING

SCHEME

Percentage NT-Xent-LM NT-Xent Triplet-LM Triplet

60% 0.82 0.79 0.79 0.78
80% 0.81 0.81 0.74 0.75
100% 0.82 0.79 0.76 0.73

In our first experiment, we considered an ablation study

to validate the contribution of different components in the

proposed learning scheme, reporting the ROC-AUC perfor-

mance in a stratified sub-sampling scheme. In such sense,

we are interested in quantifying the contribution of NT-Xent

loss w.r.t the triplet version that only considers one negative

sample in the tuple. Also, we are interested in measuring

the contribution of lesion mining (LM) for the proposed

SCL scheme. Table I summarizes the achieved results for

the different configurations. It should be noted that triplet

loss is relatively independent to the mining process but with

a remarkable low performance with respect to the NT-Xent

loss. The best configuration was achieved with the NT-Xent

loss but with a proper tuple selection, achieved by the lesion

mining process.

Then, in a second experiment we compared the best con-

trastive configuration w.r.t the BCE learning scheme under

different sub-sampling configurations. Figure 2 summarizes

the achieved results for both learning schemes in the test

set, showing a convincing advantage of SCL at different

sub-sets of annotated lesions. These results evidence that

from 60% of the annotated lesions, it is enough to obtain

appropriated representations of CSR. Remarkably, our SCL

scheme achieved a ROC-AUC of 0.82 in the test set using

only the 60% of the annotated data, while for the baseline

BCE learning, the deep representation obtained a ROC-AUC

of 0.77. Moreover, Mehrtash et al. [7] reported a ROC-

AUC of 0.80, but using Ktrans, ADC, and B-VAL maps,

and all of the available annotated lesions. This fact clearly



Fig. 2. ROC-AUC performance archived by Mehrtash’s architecture in the test set using a SCL strategy (green), and the classical BCE learning scheme
(red) under different sub-sampling configurations. From left to right: benignant, stratified and malignant sub-sampling strategies respectively.

highlights the potential of SCL to update deep convolutional

representations in clinical scenarios with scarce of data. The

obtained results may be attributed to the contrastive self-

entropy learning of multimodal lesions, which exploits intra

and inter variabilities of prostate tissues. Besides, this SCL

scheme is in general robust to imbalance data problems, a

real issue on clinical scenarios. Finally, the Mann-Whitney

U ranked test was estimated using both learning schemes,

suggesting with a confidence of 95% (p-value=0.0001), that

these learning schemes are statistically different in their

probability distributions.

IV. CONCLUSIONS

This work presented a supervised deep contrastive learning

strategy to describe morphological and cellular density pat-

terns on MRI, which are related with prostate cancer disease.

Results showed that SCL strategy improved the characteriza-

tion of malignant lesions w.r.t supervised learning schemes

based on the binary cross entropy loss. This learning strategy

trained deep learning models with limited annotated MRI

data, a common issue in clinical scenarios. Experimental

evaluation shows that a bp-MRI approach using only the 60%
of the data is able to obtain good representations of malignant

prostate lesions. The validation also suggests the contrastive

learning scheme better exploits similarities between prostate

lesion tissues by using the annotated data more efficiently.

Future work includes the validation of weakly contrastive

learning to exploit textural visual information of prostate

lesions.
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Abstract. Objective: Multi-parametric magnetic resonance imaging (MP-MRI) has played
an important role in prostate cancer diagnosis. Nevertheless, in the clinical routine, these
sequences are principally analyzed from expert observations, which introduces an intrinsic
variability in the diagnosis. Even worse, the isolated study of these MRI sequences trend to
false positive detection due to other diseases that share similar radiological findings. Hence, the
main objective in this study was to design, propose and validate a deep multimodal learning
framework to support MRI-based prostate cancer diagnosis using cross-correlation modules
that fuse MRI regions, coded from independent MRI parameter branches.
Approach: This work introduces a multimodal scheme that integrates MP-MRI sequences
and allows to characterize prostate lesions related to cancer disease. For doing so, potential
3D regions were extracted around expert annotations over different prostate zones. Then, a
convolutional representation was obtained from each evaluated sequence, allowing a rich and
hierarchical deep representation. Each convolutional branch representation was integrated
following a special inception-like module. This module allows a redundant non-linear
integration that preserves textural spatial lesion features and could obtain higher levels of
representation.
Main results: This strategy enhances micro-circulation, morphological, and cellular density
features, which thereafter are integrated according to an inception late fusion strategy, leading to
a better differentiation of prostate cancer lesions. The proposed strategy achieved a ROC-AUC
of 0.82 over the PROSTATEx dataset by fusing regions of Ktrans and Apparent Diffusion
Coefficient (ADC) maps coded from DWI-MRI.
Significance: In this study was conducted an evaluation about how MP-MRI parameters
can be fused, through a deep learning representation, exploiting spatial correlations among
multiple lesion observations. The strategy, from a multimodal representation, learns branches
representations to exploit radio-logical findings from ADC and Ktrans. Besides, the proposed
strategy is very compact (151,630 trainable parameters). Hence, the methodology is very fast
in training (3 seconds for an epoch of 320 samples), being potentially applicable in clinical
scenarios.

Keywords: MRI, prostate cancer, Ktrans, multimodal learning, deep representations, inception-
multimodal layers
Submitted to: Phys. Med. Biol.
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1. Introduction

According to the American Cancer Society (ACS), 191.930 new cases and 33.330 deaths were
reported due to prostate cancer in the United States during 2020, hitting a new record in deaths
for the last two decades [1]. The early prostate cancer diagnosis is fundamental to properly
planning treatments, consequent with a mortality reduction. Currently, diagnostic methods
range from blood test to quantify the concentration of Prostate Specific Antigen glycoprotein
(PSA) to the Digital Rectal Examination (DRE). Nevertheless, these classical tests have
demonstrated: low specificity [2] (mainly for PSA test), and inter-examiner variability on
diagnosis (for DRE) [3]. More sophisticated and accurate alternatives for diagnosis include the
the trans-rectal ultrasound-guided biopsy (TRUS) [4], but with a significant reported rate of
false negative cases (around ∼ 30%), and side effects such as rectal bleeding, bacteriura, and
sepsis [5, 6].

Multi-parametric magnetic resonance imaging (MP-MRI) has become a powerful
medical diagnostic tool to identify clinically significant prostate lesions, and to confirm
the presence of the disease [7, 8]. In current clinical protocols, the analysis and observation
of integrated MP-MRI sequences have allowed to approximate detection and to estimate
in vivo the cancer aggressiveness, approximating the Gleason score group [9, 10]. For
instance, T2-weighted MRI sequences are useful to observe morphological prostate patterns
but with predominant limitations regarding sensitivity and specificity to characterize clinically
significant lesions [8]. Complementary, the DCE-MRI (Dynamic Contrast Enhanced)
sequences support the characterization of suspicious lesions by providing micro-circulation
parameters of tissues [11]. Among these DCE sequences, the pharmaco-kinetic features
coded, such as the volume transfer constant (Ktrans), exposes micro-circulation patterns that
correlate with the non-controlled formation of blood vessels in the prostate gland (prostate
Angiogenesis) [12]. Despite of the contribution of MP-MRI in the characterization of clinically
significant lesions, these MRI techniques are commonly analyzed independently based only on
expert observations, introducing high variability on the diagnosis and leading to false positive
detection with respect to other diseases such as Benign Prostatic Hyperplasia (BPH), bacteriura
or Angiogenesis [13, 14].

Hence, computer-aided diagnosis (CAD) systems are demanding to capture abnormal
prostate lesion patterns, available from each of the MRI sequences, to support the analysis
of suspicious lesions. This modelling is nevertheless very challenging because the textural
variability of lesions. Additionally, there is not a prior knowledge of which MP-MRI sequence
could better support lesion characterization, or how these sequences should be integrated. In
such sense, a set of approaches have been proposed to support detection, localization and
classification of regions related to prostate cancer. For instance, Chan et.al. [15] proposed a
multimodal approach that integrated ADC maps, and proton density (PD) images, concatenating
only peripheral zone regions, which thereafter were mapped to a Support Vector Machine
(SVM). Likewise, Langer et. al [16] integrated ADC and T2-Weighted maps into a logistic
regression classifier to predict potential regions associated with cancer. The strategy works
under a linear combination criteria, which could be a strong constraint. Then, Mehrtash et.
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al [17] proposed a 3D multimodal-convolutional network that received zonal information of
the prostatic gland and input regions from ADC, Maximum B Value (B-VAL), and Ktrans

sequences. Despite this approach describes lesions from an integrated early fusion strategy,
there is not a clear contribution of each MRI sequence, and how the fusion strategy allows
a multi-parametric characterization of malignant lesions. Afterwards, Liu et. al proposed
a MP-MRI convolutional network that uses Ktrans, ADC and T2WI regions to characterize
suspicious relevant lesions related to prostate cancer[18]. Nevertheless, the early fusion strategy
proposed in this study considers only one slice per modality, ignoring important volumetric
information of neighbor tissues, where the tumors may spread and grow. Similarly, Chen et. al

characterized malignant prostate lesions in regions of T2WI, ADC and Ktrans images using
an early fusion strategy on the InceptionV3 architecture [19]. Nevertheless, the analysis of
each MRI sequence is limited by including only one slice, losing important spatial information
of prostate lesions. Sunoqrot et. al[20] characterized clinically significant regions using a
logistic regression over T2WI sequences, but ignoring antrofibromuscular-stroma regions of
the prostate gland. Afterward, Bleker et. al [21] extracted radiomic features but losing only
considering lesions that belong to the peripheral zone.

This work introduces a new multimodal deep strategy to characterize clinically significant
regions, that are associated with prostate cancer, over different MP-MRI sequences. A main
contribution of this approach is the multimodal inception module that allows a non-linear
integration of each MP-MRI sequence, preserving spatial information of the tissues and
operating on a high level of representation. The proposed approach starts by extracting
potential 3D regions of interest (ROIs) around expert annotations over different MRI sequences.
These regions were computed from peripheral (PZ), transitional (TZ) and anterior fibromuscular
stroma (AS) zones of the prostate. Then, a set of convolutional learned filters are applied to
each of the MRI sequences to extract textural patterns over micro-circulation, morphological,
and cellular density features. At intermediate stages, these textural patterns are fused by
using an inception-based scheme to learn cross-correlation patterns among different MP-MRI
sequences. This strategy allows the integration of different prostate cancer biomarkers through
a joint representation that integrates textural features from MP-MRI sequences that correlated
with the disease.

2. MP-MRI sequences to support lesion prediction

MP-MRI is a fundamental tool to support cancer disease diagnosis, where different sequences
capture textural parameters related to the anatomy, micro-circulation and cellular density
features of the prostatic gland [8, 12]. Actually, some clinical studies have demonstrated the
importance of such diagnostic sequences, even independently, to localize tumors at different
prostate zones [22, 23, 24]. Also, these sequences have been used effectively to conclude in non-
specific cases with negative biopsies and highly positive PSA blood test [8]. Likewise, these
sequences help to diagnose and characterize prostate lesions, located far from the rectal wall,
which could not be studied through a digital rectal examination (DRE) or trans-rectal ultrasound
guided biopsy [8]. Specifically, from MP-MRI sequences it is possible to obtain modalities
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Figure 1. Prostate lesion regions taken from clinical annotations made by radiologist over
different prostate zones, and projected over different parameter sequences. These delimited
regions were identified as clinically significant prostatic lesions confirmed by biopsy. Each
of the columns corresponds to a different sequence, from left to right the figure illustrates:
T2WI-MRI trans-axial plane, Ktrans, ADC, and T2WI-MRI sagittal plane. From top to buttom
the figure shows the peripheral (PZ), transition (TZ), and antro-fibromuscular stroma (AS)
zones.

(sequences) available from different capture settings, which spatially allow to identify different
features of the prostatic tissue. In fact, some clinical protocols, such as PI-RADS (Prostate
Imagining Reporting and Data System), recommends to use a multi-parameter observational
approach integrating almost three modalities to localize and diagnose prostate cancer [25].
The most common MP-MRI sequences used in clinical routine are briefly introduced in next
subsections.

2.1. Dynamic Contrast Enhanced (DCE) and Ktrans images

Dynamic Contrast Enhanced (DCE) sequences allow to measure and localize the accumulation
of contrast agents such as gadolinium in the prostatic tissue [26]. From these sequences,
the measure of capillary permeability for each voxel is arranged on special Ktrans images,
which have recently emerged as an alternative to characterize and track the aggressiveness of
malignant tumors. These sequences, according to European Society of Urogenital Radiology

(ESUR), allow to observe vascular and micro-circulation properties of the tissue, among
others, the plasma blood flow, vascular permeability, and the surface capillary area by unity of
mass [12]. These properties fully correlates with the non controlled formation of blood vessels
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Figure 2. Ktrans samples: from left to right it is represented the transition (TZ), antro
fibromuscular stroma (AS) and peripheral zone (PZ) respectively. The row at the top represents
benign prostate lesions and the bottom row illustrates positive cases of prostate cancer.

(angiogenesis), which is an essential process in the propagation of tumors in tissues [27].
Interestingly enough, in some studies have been reported a correlation between Ktrans images
and the histopatologic grade of gliomas, which could result fundamental to determine cancer
degree from macroscopical observations [28, 29]. Despite of this remarked points, the
sensibility on DCE-MRI is affected with some observational evidences of Angiogenesis,
which could be associated to a natural process of wound healing [7]. In clinical routine is
recommended to complement an integrated observational study and evaluation of prostate
lesion from different MP-MRI sequences.

2.2. DWI and ADC maps

The DWI (Diffusion Weighted Imaging) represents the cellular density of the tissues as a
magnitude of diffusion water particles. These sequences commonly support the discrimination
between cancerous tissues and regular tissues. In such modality, the high cellular density is
expressed as a low reflected intensity signal, and a non-uniform gradient change around typical
uniform regions, due to the high cellular density present in cancerous tissue. Some studies have
supported that the ADC (Apparent Diffusion Coefficient) maps have a negative correlation
w.r.t the Gleason Grade score measured over corresponding histopathological examples [30].
Nevertheless, a main limitation of these sequences is the poor resolution that difficults the
proper localization of prostate lesions in clinical routine.

2.3. T2WI Sequences

The T2 weighted image (T2WI) is one of the most used MP-MRI sequence due the anatomical
description of the prostate to detect and identify lesions from multiple planes (transaxial,
coronal and sagittal planes) [8]. This sequence results from relaxation time of several tissues
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Figure 3. ADC samples: from left to right it is represented the transition (TZ), antro
fibromuscular stroma (AS) and peripheral zones (PZ) respectively. The row at the top shows
benign prostatic lesions and the row at the bottom illustrates positive cases of prostate cancer.

Figure 4. T2WI samples of trans-axial plane: From left to right it is reflected the transition
(TZ), antro fibromuscular stroma (AS) and peripheral zone (PZ) respectively, The row at the
top represents benign prostate lesions and the bottom row illustrates positive cases of prostate
cancer.

and the water response. Particularly, for prostatic observations, the peripheral zone usually
presents a high intensity due to the water levels, while cancerous tissues show low intensity
levels. However, these intensity levels at T2WI sequences could present a high variability and
some clinical analysis could be easily misdiagnosed with other pathologies such as prostatitis,
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benign prostate hyperplasia (BPH) and hemorrhage post-biopsy [31].

3. Proposed approach
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Figure 5. The general framework of our proposed strategy. In section A, different MP-MRI
sequences are extracted to characterize malignant lesions. Then in section B, each sequence is
decomposed in a set of convolutional filters that represents the lesions. Therefore in section C,
these representations are fused using a compact cross-correlation module. Finally in section D,
the fused representation is flattened (vectorized representation R

W×H×L → R
W ·H·K) to an

embedding vector and mapped to a probability distribution.

This work introduces a multimodal convolutional strategy that estimates the probability
that a given MRI prostate lesion would be clinically significant. Firstly, each MP-MRI modality
is modelled in independent convolutional branches to achieve a better spatial representation of
observed textural patterns. Each deep modality branch is then integrated with Inception-like
modules, which obtain a non-linear joint representation of prostate lesions in MP-MRI. This
Inception multimodal integration allows to preserve spatial information while naturally exploits
the integration among activations of multiple modalities. The pipeline of our proposed strategy
is illustrated in Figure 5.

3.1. Convolutional stage

In the clinical routine, an MRI study of a patient is formed by n possible MRI sequences
{M1,M2, . . . ,Mk, . . . ,Mn} with a set of prostate lesion coordinates provided by radiologists
Pi : {~p1, ~p2, . . . , ~pk, . . . , ~pn}. Then, around this localizations, we define prostate lesion as a set
of cropped volumetric regions Ci : {c1, c2, . . . , ck, . . . , cn}, as shown in Figure 6.

Here, the deep representation, initially consider n isolated convolutional branches w.r.t
each of the available MRI sequences. Each convolutional branch k codes information as
a set of stack transformations of separated band responses of frequency filters with some
coverage of mid frequencies. These responses are progressively convolved to obtain more
localized and selective high-level patterns on successive convolutional layers, augmenting
invariance representation. At the end of each convolutional branch, it is obtained a visual
representation that captures the most relevant concepts related to the disease. At each branch, it
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Text

Figure 6. An Example of the MRI region extraction process with 3 slices and a window size of
40 voxels. Resulting in a ROI Ck ∈ R

40×40×3.

was implemented a batch normalization over the slices axis to center the mean and reduce the
variability of spatial deep features. The process of convolution for each modality is illustrated
in Figure 5-b.

3.2. MP-MRI Inception fusion stage
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Figure 7. Module of integration of the proposed strategy, 1x1 convolutions allow our model
to calculate the non-linear cross correlations between MRI ROI sequences. Then, the resulted
feature map is convolved progressively with a smaller number of filters to produce a compact
multimodal representation of malignant prostate lesions.

A main problem in MRI is the joint analysis of these sequences. As explained on section
2, each of these sequences illustrates different textural patterns that could be potentially used to
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identify clinically significant prostate lesions. However, learning a joint representation of MRI
images is a challenging task due to high variability in the textural characterization of different
biologic phenomena, and the variability of the spatial resolution in MRI images.In this work,
we propose a strategy to learn a joint representation of clinically significant prostate lesions in
MRI images. As shown in Figure 7, for the layer l we perform a concatenation of the l−1 filter
responses denoted as H l =

⋃
j=1,...,n G

l−1

j . Then, this stack of feature maps is convolved with

a set of r1 filters of size 1× 1× r1 denoted as: ψ′l : {ψ′
1

l
, ψ′

2

l
, . . . , ψ′

r1

l}. Therefore, the joint
learned representation of these multimodal MRI features would be G

′l = max(0, H l ∗ ψl).
Such a joint learned representation G

′l has a non-linear integration of different MRI
sequences, which allows the model to cross-correlate local features of morphological, cellular
density, and blood vessel descriptors of prostate lesions over the filter space. In a similar way,
the resulting fused feature map G

′l is convolved progressively with a set of (r2, r3, . . . , rn)
filters of size 1x1, where rn < . . . < r2 < r1 . Also, at the end of these progressive blocks
we apply batch normalization to reduce the variability of our multimodal MRI representation.
Hence, we flatten the last layer of our integration module, following two dense layers that fully
correlate multimodal hidden information, representing prostate lesion at a high semantic level.

A prostate cancer score is then achieved by mapping the embedding output to a sigmoid
function to discriminate between malignant and benignant prostate lesions. It should be noted
that in clinical routine the most common scenario it is to have unbalanced data with respect
to labeled regions. To overcome this issue, We added a penalty term between both classes
as w0 = 1 w1 = |P |+|F |

|P |
, where (|P |, |F |) represent the cardinality of malignant (Positive to

cancer) and non-malignant (False to cancer) samples during training process. Then, the loss
function in such case is expressed as L = w0 · y · log(ŷ) + w1 · (1− y) · log(1− ŷ).

4. Experimental setup

4.1. Dataset

The proposed strategy was validated over the public dataset of the SPIE-AAPM-NCI Prostate
MR Classification Challenge [32]. This dataset reported a set of 344 prostate MR studies
captured from a retrospective study, that included T2-Weighted Imaging (T2WI), proton
density-weighted imaging (PD-WI), dynamic contrast-enhanced (DCE) and diffusion weighted
imaging (DWI) over the PZ, TZ and AS prostate zones. The present dataset is compounded
by a training cohort of 320 annotated lesions, and a testing cohort of 208 annotated lesions.
Some of the MR prostate studies may include more than a single suspicious lesion from a
same patient. For such a reason, the population of lesions belongs to 204 and 140 patients
for training and testing cohorts respectively. In addition, each of these MR studies included
relative coordinates to the prostate lesion in each of the MRI sequences, the prostate zone of
study, the clinical significance of the lesion (which is supported by biopsy), and some metadata
related to the findings and patient identifiers.
The public challenge has two independent sets: training and test. Regarding training set, the
evaluation of the proposed approach followed a stratified K fold cross-validation (with K = 8).
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Additionally, for each of the K = 8 folds, we extracted the 20% of the training lesions under a
stratified selection strategy to obtain a validation cohort. Hence, for the best representations,
we submitted the lesion classification over the test set to the challenge official website and
recovered the performance of the proposed approach. Finally, the performance of proposed
strategy, in the classification task, was validated with respect to the Area under the receiver
operating characteristic curve (ROC-AUC) because the reported in-variance to threshold values,
measuring true positive rate (sensitivity) against the false positive rate (fall-out).

4.2. Architecture configuration

The proposed strategy was coded with a total of two convolutional layers for each branch that
receive input modalities. Then, a total of three inception modules allowed to learn multimodal
cross information through the activations. The learning scheme was implemented with an
Adam optimization rule with a learning rate lr = 1×10−3. A per-voxel scaling was carried out
to achieve better conditions during optimization process. Also, during the learning phase, the
non-malignant lesions were penalized with the following class weights configuration: W0 = 1

and W1 = 1 + P+F
P

, being P the number of samples with clinically significant lesions at and
F the number of samples with non clinically significant lesions. A data augmentation was also
considered, including rigid transformations, such as: flips, rotations and translations.

5. Evaluation and Results

An ablation study was firstly herein conducted to validate the proposed strategy at different
MRI input configurations. For experiments with a single MRI sequence, only convolutional
layers were included into scheme, together with fully connected layers. In this experiment
the following MRI sequences were analyzed: the Ktrans, ADC, and T2WI sequences. For
multimodal MRI input configurations, a complete scheme was validated using the convolutional
stage, fusion stage and the clinical significance prediction from dense fully connected vectors.
These configurations considered the bi-modal integration of: (Ktrans + Ktrans divergence
descriptor), and (Ktrans + ADC). Also, trimodal experiments were herein considered, such
as: (Ktrans+ ADC+ T2WI transaxial) and (Ktrans + Ktrans divergence descriptor + ADC). In
the whole configuration, the proposed strategy was validated using a stratified 8 fold cross
validation scheme with the annotated data of the training cohort, and regarding the test subset
managed by the authors of the dataset. In Figure 8 is illustrated the general performance of
different models for validation-test experiments, being remarkable the independent performance
of Ktrans and ADC sequences, achieving a ROC-AUC of 0.765 − 0.72 and 0.669 − 0.73,
respectively.

Regarding multimodal experiments, the best configuration was achieved by integrating
Ktrans-ADC, achieving a ROC-AUC of 0.769− 0.820, on validation-test experiments. Then,
it was included the T2WI sequence as a third modality to complement the charaterization
of the disease. The results show a similar ROC-AUC performance without enhancing the
representation of malignant lesions. Moreover, the inclusion of such new modality to the
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proposed strategy increases the standard deviation, resulting in less confidence to the obtained
results. Also, the generation of an artificial modality, divergence maps of Ktrans, achieved
stable results but comparable with the modelling of only two raw modalities. These experiments
are also supported by previous works [7, 8], which have evidenced that MP-MRI enhances
the characterization of clinically significant lesions on prostate cancer, combining information
such as anatomical structure with blood architectural patterns. Complementary, Figure 10
illustrates the ROC-AUC mean and standard deviation reached by MP-MRI models over the
PZ, AS and TZ in the validation set. As figure shows, (Ktrans + ADC) model reaches the best
ROC-AUC performance over the PZ (0.84). Previous studies have also shown that prostate
cancers arises mainly in PZ [33, 34], which has a major tendency to illustrate cancer as vascular
and cellular density abnormal patterns. In addition, it is shown that the integration of T2WI-
MRI sequence at the model (Ktrans + ADC+T2WI) enhances the ROC-AUC performance
over the TZ zone. However, this model presents high variability in malignant prostate lesions
characterization which could be explained due to homogeneous intensities between non-
malignant and malignant tissues in the T2WI-MRI sequence[8]. Finally, the integration of
Ktrans divergence images at (Ktrans + Ktrans divergence + ADC) model allow to identify
malignant prostate lesions invariably to the prostate zone.

Figure 8. Results for the proposed approach, green colored bars represent the value of ROC-
AUC achieved during the training stage, red colored bars represent the ROC-AUC performance
of the models at the testing stage. K, KD, A, TT, TS stand for Ktrans, Ktrans divergence,
ADC, T2WI transaxial plane and T2WI Sagittal plane respectively.

The experiments herein reported shows that a model that integrates Ktrans images with
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Figure 9. Validation over the training stage. An 8-fold cross validation strategy was applied over
the training samples to compare the ROC-AUC performance of different multimodal models
at each fold of data. Blue colored bars represent the performance of a bimodal model that
integrates Ktrans images with Ktrans divergence images. Orange colored bars represent the
performance of a bimodal strategy that integrates Ktrans images with ADC sequences. Green
colored bars represent the performance of a trimodal approach that integrates Ktrans images,
Ktrans divergence images and ADC. Finally, red colored bars represent the performance of a
CNN that integrates Ktrans images, ADC sequences and T2WI transaxial plane sequences.

Figure 10. MP-MRI models performance in the validation set of data, blue bars represent
Antrofibromuscular Stroma zones (AS), orange bars correspond to Peripheral zone (PZ) and
green bars show the Transition zone (TZ)
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ADC sequences achieves the best results. Hence, this model, (Ktrans + ADC), was selected
to analyze its performance w.r.t the window size, from axial plane, related to voxels around
lesion and number of slices, along depth axis. Figure 11 summarize the obtained results,
regarding ROC-AUC, for both evaluated parameters: window size (top) and number of slices
(buttom). Firstly, the regions were fixed to three slices and window size was augmented from
20× 20 to 80× 80. Best results were achieved by small regions, specifically, with (40× 40)
and (20) with a ROC-AUC on test of 0.82 and 0.81, respectively. This performance could be
explained with the fact that neighborhood voxels form the appearance characteristic of lesion.
In constrast, larger window sizes could introduce noise variability to the lesion model. In a
second evaluation, from a fixed window size of (40× 40), it was evaluated different number
of slice configurations (see on Figure 11, buttom). Remarkably, the use of only three slices
resulted as ideal configuration of the proposed architecture’s input, achieving a ROC-AUC
of 0.82. Such fact has also associated the assumption that not only close voxels represent the
lesion but also could the low resolution of images in this axis (∼ 14 slices in average).

Additionally, the inception module has the capability to recover spatial patterns across
the modalities by using different sizes for the kernels. In this work were evaluated different
configurations of kernels of (1×1), (3×3), (5×5). Also mixture blocks, e.g, the combination
of (1 × 1) plus the (3 × 3),were herein evaluated. Nevertheless, the best configuration was
achieved by using the simplest configuration, i.e., only a block from a kernel of (1× 1) with
the score of 0.77 − 0.82 in validation-test. In such sense, it could be understood that only
across modalities integration is relevant on the model, while the spatial integration (increasing
the kernel size) does not improve the characterization of lesions.

Figure 12 illustrates the output activations for independent Ktrans and ADC branches,
computed over malignant (Top rows) and benignant lesions (Buttom rows). Also, the final
columns are the output attention maps, computed from a classical Grad-CAM algorithm. As
expected, the Ktrans activation responses shows regions that highlight mainly the areas where
the lesion is located, which usually are the zones with higher concentration of gadolinium.
For benign lesions, the activations are spread-out along the region which may explain the
Angiognesis. Interestingly, the attention maps recovered our deep representation stand out
and summarize such information about the lesion. On the other hand, ADC region activations
illustrate a negative correlation with the signal intensities of the lesions. In same sense,
GradCAM map highlights the peripheral zone of the prostate gland, indicating low cellular
density in the affected zones. Therefore, according to our qualitative and qualitative results,
seems that the proposed architecture is learning the cross correlation between high contrast
agent areas jointly with cellular density zones represented as low signal intensities in ADC
maps. These findings are supported in the state-of-the-art by some studies that have shown
a negative correlation between ADC and tumor aggressiveness quantified as Gleason score
[35, 36, 37].
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Figure 11. Panel Top: Testing and validation results of the Ktrans ADC inspired inception
strategy fixing the amount of slices and variating the window size in steps of 20 voxels. Panel
Bottom: Testing and validation results of the Ktrans ADC inspired inception strategy fixing
the window size and variating the amount of slices.

6. Discussion

This work presented a MP-MRI fusion strategy that using (1 × 1 × r1) convolution kernels
obtained cross correlations among spatial features of the available sequences. This fusion
strategy obtained a ROC-AUC of 0.82 in the PROSTATEx challenge using a deep compact
visual representation that integrated ADC and Ktrans feature maps. Also, the experiments
show that using global regions among trans-axial axis (similar to Mehrtash work [17]) lead to
misclasifications that could be explained due to the inclusion of neighboring vital organs over
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ADC

Ktrans

ADC

Ktrans

Input GradcamActivations

Figure 12. Visual representation obtained by the proposed architecture over a malignant (first
two rows), and a benignant (last two rows) lesions. From left to right we have: the original input
lesion, five deep feature maps obtained by our proposed architecture, and finally the attention
map obtained by GradCAM algorithm.

MRI sequences such as the bleeder, introducing noise on the characterization of the disease.
On the other hand, including very local regions (only 1 slice of the axial plane) could result on
losing textural information among neighboring regions of the tissue, where the tumors could
spread and grow.

To compare the performance on the diagnosis (ROC-AUC), and the computational cost
of some state-of-the-art strategies (described in the quantity of parameters to be learned),
a baseline comparison was carried out with similar deep architectures, evaluating their
performance on the PROSTATEx challenge. As Table 1 shows, the proposed approach achieved
competitive results using a compact deep architecture, which results fundamental on clinical
scenarios where computational infrastructure, and the amount of labeled lesions may be limited.
For instance, the best result was achieved by Liu’s approach [18] but requiring more than 4
millions of parameters to be learned. In fact, to obtain the reported results, Liu required a
deep model 29 times bigger in terms of learnable parameters to obtain an improvement of
only 0.02 in the ROC-AUC. Moreover, the proposed approach achieved similar results, and
using only two MRI sequences (ADC + Ktrans). Likewise, Chen used a transfer learning
strategy to overcome the lack of annotated data and to pre-train his deep visual representation
from the open ImageNet dataset [19]. However, Chen’s approach achieved similar results
with respect to our approach but using a considerable deeper architecture, indicating that such
deep representation may be limited to the main textural differences among natural and medical
imaging domains. In general, these models require more computational resources to fit and
adjust their representation.
The proposed compact deep visual representation has similar results compared with state



Prostate Cancer detection 16

Study ROC-AUC Number of learned parameters
Liu’s approach [18] 0.84 4.523.298

Chen’s approach TL-ImageNet [19] 0.83 > 14, 714, 688

Our Approach 0.82 151.630

Mehrtash’s approach [17] 0.80 270.330 + 6.144F

Table 1. Computational cost expressed as number of learnable parameters, ROC-AUC
performance of different state-of-the-art studies in prostate cancer.

of the art studies due to the relationship between available data and amount of learnable
parameters. From this approach, we are able to encode MRI lesions into compact non-
linear cross correlation patterns, among different MRI sequences, that represent malignant
lesions from a multi-parametric perspective. Specifically, in Figure 12, from the attention
maps recovered was observed the complementary role between ADC and Ktrans images. In
such case, Ktrans is dedicated to localize lesions, while the ADC show an inverse relation
regarding the aggressiveness of the lesion. We hypothesize that compact models have major
chance to be implemented in clinical scenarios, without specialized infrastructure. These
approaches may perform fast inferences, acting online during the expert radiologist analysis.
With such considerations, the model could be also updated with new samples generated in
production environments, to better deal with visual variability of lesions. Finally, an important
limitation of this work is the non-inclusion of T2WI MRI sequences to analyze prostate cancer
regions. Nevertheless, the main role of T2WI in prostate cancer is to localize tumors, which
not necessarily are malignant. In this sense, seasoned radiologists could manually annotate
potential cancerous regions, and the presented approach could be introduced as a tool to
support the diagnosis of prostate cancer by characterizing malignant suspicious tumors over
complementary Ktrans and ADC maps.

7. Conclusions and Perspectives

This work presented a MP-MRI deep convolutional strategy to estimate non-linear textural
patterns related to prostate cancer disease. The results suggest that ADC and Ktrans are the
most relevant MRI sequences to characterize clinically significant prostate lesions under the
multimodal-fusion proposed scheme. The proposed strategy boosts the ROC-AUC performance
about a 10% with respect to baseline strategies. We believe that such gain in performance could
be attributed to the 1×1 convolutions that learned non-linear cross correlations between textural
patches of MRI sequences. These kind of convolutions allowed to reduce the dimensionality
over the filter space to design a compact multimodal representation of malignant prostate
lesions related to the disease. Future work will include the use of self-supervised learning
strategies to pre-train deep learning models without any human annotations, reducing the effort
of physicians and radiologists during annotation stages.
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